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Abstract—We introduce TranSeq, a non-deterministic, branching
transition system for deciding the satisfiability of conjunctions
of string equations. TranSeq is an extension of the Mathemati-
cal Programming Modulo Theories (MPMT) constraint solving
framework and is designed to enable useful and computationally
efficient inferences that reduce the search space, that encode
certain string constraints and theory lemmas as integer linear
constraints and that otherwise split problems into simpler cases,
via branching. We have implemented a prototype, SeqSolve,
in ACL2s, which uses Z3 as a back-end solver. String solvers
have numerous applications, including in security, software engi-
neering, programming languages and verification. We evaluated
SeqSolve by comparing it with existing tools on a set of
benchmark problems and our experimental results show that
SeqSolve is both practical and efficient.

I. INTRODUCTION

The problem of solving string equations has interested mathe-
maticians and computer scientists for decades. Security, soft-
ware engineering and verification applications, in particular,
have generated a renewed interest in string solvers. Security
applications include finding cross-site scripting vulnerabilities
in Web applications, SQL injection attacks and fuzzing [1], [2],
[3], [4], [5]. Software engineering applications include testcase
generation, symbolic evaluation and flow analysis [6], [7], [8].
Programming language applications include type inference for
array processing languages [9][10].

The basic problem is easy to define. Let Γ be a non-empty set
of constants. The elements of Γ∗ form a free monoid, i.e., a
structure with a single associative operation, corresponding to
concatenation, and an identity element ε. Elements of Γ∗ are
called strings or words. Let X be a set of variables over Γ∗

and let Y be a set of variables over Γ such that Γ, X and Y
are disjoint. Elements in Y are also called unit variables. Let
Z = X ∪Y . Elements of the free monoid (Γ∪Z)∗ are called
sequences, again with ε as the identity. A normal substitution
is a partial function ρ : Z ⇀ (Γ∪Z)∗. Every substitution can
be extended to the domain (Γ∪Z), by defining ρ(a) = a for
all a not in the domain of ρ. We can also extend the domain
to (Γ∪Z)∗ in the standard way. wρ stands for the application
of substitution ρ to the sequence w and it extends naturally
to sequence equations. A solution of a set of equations
{u1 = v1, u2 = v2, . . . , un = vn} is a substitution ρ that
when applied to each equation yields identical sequences, i.e.,
{u1ρ = v1ρ, u2ρ = v2ρ, . . . , unρ = vnρ} is a set of syntactic
equivalences over (Γ ∪ Z)∗. The problem statement is: given
a set of sequence equations {u1 = v1, u2 = v2, . . . , un = vn}
find a solution if there exists one, otherwise return unsat .

Related Work. Makanin, in 1977, proved that the satisfia-
bility of string equations is decidable [11]. A series of results
on complexity followed, after which Plandowski showed that
the problem is in polynomial space [12]. String solvers sup-
porting a variety of theories are available, e.g., Z3Str3 [13],
CVC4 [14], [15], S3P [16], Norn [17], TRAU [18], Str-
Solve [19], Sloth [2], Kepler22 [20] and HAMPI [1]. Z3Str3
and CVC4 are multi-theory SMT solvers which consider
unbounded string equations with concatenation, substring,
replace and length functionality. Together with S3P and Norn,
these tools handle a variety of string constraints including
string equations, length constraints and regular language mem-
bership. However, these tools are incomplete. HAMPI works
only for problems with one string variable of fixed size.
Kepler22 is a decision procedure for the straight line and
quadratic fragments of string equations. Norn and TRAU
can decide only the acyclic fragment whereas Sloth de-
cides straight line and acyclic fragments. To the best of our
knowledge, there is no solver that for decidable fragments
is both theoretically and practically complete, e.g., none
of the above solvers are able to solve the string equation
xcyczvycya = yacwazvbux. Therefore it is important to
explore new techniques for solving string equations. One of
the most promising existing techniques uses context-dependent
techniques to improve the reasoning of string constraints in the
context of DPLL(T)-based SMT solvers [15]. Similarly, our
work introduces new techniques for reasoning in the context of
BC(T)-based (Branch and Cut Modulo T) MPMT solvers [21],
[22].

Contributions. Our contributions include (1) TranSeq, a
new non-deterministic, branching transition system that can
be used as part of the MPMT framework for combining
decision procedures, (2) the SeqSolve solver, an implemen-
tation of TranSeq which resolves non-deterministic choices
in a way designed to infer as much as possible with as few
computational resources as possible, (3) proof sketches of
soundness, completeness and termination for TranSeq and (4)
an evaluation of SeqSolve using a set of benchmarks from
related work, as well as Remora examples [9], [10]. We use
publicly available benchmarks, being careful to evaluate only
the string solving capabilities of our tool, not irrelevant aspects
of the underlying SMT/MPMT tools. The integration of our
solver into SMT/MPMT tools is briefly discussed. There are
over 1,100 problems in our benchmark and no existing string
solver can solve all of them. Experimental results show that
SeqSolve is more efficient and complete than existing solvers.
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Paper Outline. Section II illustrates some techniques we use
to reason about string equations through motivating examples.
Section III defines basic terms used to define our transition
system and algorithm. Section IV describes TranSeq and
SeqSolve. Section V gives proofs sketches of correctness
and termination; due to space limitations full definitions and
proofs will appear in a full version of the paper. Section VI
describes implementation considerations of our prototype and
Section VII contains our evaluation. Conclusions and future
work appear in Section VIII.

II. ILLUSTRATIVE EXAMPLES

In this section, we highlight some of the techniques used in
our string equation solver, via a collection of examples, where
a, b, c . . . are constants (elements of Γ) and u, v, w, x, y and z
are string variables (elements of X ).

Example 1 [ConstUnsat] Consider the string equation b = a.
The constant b differs from the constant a so this equation
is unsatisfiable. Our algorithm determines by performing par-
tial evaluation that includes evaluating constant prefixes and
suffixes of equations.

Example 2 [Trim] Consider xab = xbb. Our algorithm trims
common prefixes and suffixes from both sides of the input
equation to get a = b which is unsatisfiable by ConstUnsat.

Example 3 [Decompose] Consider xyazy = yxubyz. Prefixes
xy and yx have provably equal lengths. So do the suffixes
zy and yz. Therefore our algorithm decomposes the input
equation into three equations: xy = yx, a = ub and zy = yz.
Equation a = ub can be further decomposed into a = b and
u = ε, which is unsatisfiable by ConstUnsat.

Example 4 [EqLength] Consider uvxayvu = vuyxuv.
Decomposition generates the two distinct equations uv = vu
and xay = yx. Notice that if an equation is satisfiable, then
both sides have to have the same length and our algorithm
generates the constraint lx + 1 + ly = ly + lx where lx
and ly denote the lengths of x and y, respectively, which is
unsatisfiable.

Example 5 [EqConsts] Consider ax = xb. If the equation is
satisfiable, then both sides of the equation must have the same
number of occurrences of each constant. To enforce this, our
algorithm generates the constraint 1 + cxa = cxa, where cxa is
the number of a’s in x, which is unsatisfiable.

Example 6 [VarElim] Consider the set of (implicitly con-
joined) string equations {uv = vu, xa = ax, cy = x}. The
last equation has the form of a definition and this allows our
algorithm to eliminate x by applying the appropriate substitu-
tion to the set of equations, giving us {uv = vu, cya = acy}.
Since cya = acy is unsatisfiable, so is the set.

Example 7 [VarSplit] Consider xxa = cyx. One side starts
with the constant c so the other side must also start with c,
which means x cannot be empty and must start with a c. Our
algorithm detects this and adds the equation x = cx̂, where x̂

is a new string variable. After eliminating x and trimming, we
wind up with the equation x̂cx̂a = ycx̂, which decomposes
into x̂c = y and x̂a = cx̂. The EqConsts analysis (Example 5)
infers that the second equation is unsatisfiable. Our algorithm
also does this for suffixes.

Example 8 [VarSubst] Consider wuzwuza = cywuz. The
equation is equi-satisfiable with xxa = cyx: we substitute a
new string variable, x, for the sequence of string variables,
wuz, thereby eliminating all occurrences of w, u and z from
all string equations. The resulting equation is unsatisfiable by
VarSplit (see Example 7).

Example 9 [Rewrite] Consider the set of (implicitly con-
joined) string equations {zv = ba, xxazv = cyxba}. The
first equality can be used to rewrite the second equality to
xxazv = cyxzv which can be trimmed to xxa = cyx, which
is unsatisfiable, as per Example 7.

Example 10 [LenSplit] Consider xbyu = caxzb. The length
of the prefix xb is strictly less than the length of the prefix cax,
which allows us to infer that yu = ŷzb for some new string
variable ŷ 6= ε. We can rewrite yu to ŷzb (see Example 9)
and after trimming, we wind up with the equation xbŷ = cax,
which is unsatisfiable (see Example 5).

Example 11 [EqWords] Consider xbcay = ycbax. Let W x
ca

and W y
ca be the number of occurrences of a word ca in x and y

respectively. If the equation is satisfiable, then both sides must
have the same number of ca occurrences. To enforce this, our
algorithm generates the constraint W x

ca + 1 + W y
ca = W y

ca +
W x
ca, which is unsatisfiable. Consider bwbxacv = vbabxcw,

which shows that counting words requires more care than what
the above example suggests, e.g., to count the occurrences of
bc, we have to take into account whether c is a prefix of w,
whether b is a suffix of x, whether x is empty, and so on. We
use 0-1 indicator variables Pwc , S

x
b and εx, denoting the above

conditions, respectively. Now, with just the ab occurrence
analysis, we can use variable splitting on w (w ends in an
a) and then on v (v ends in an a) to derive a contradiction.

Example 12 [SAT] None of the string solvers we tried are able
to solve the string equation xcyczvycya = yacwazvbux. This
equation is outside the scope of Kepler22, StrSolve, Hampi
and Sloth. Sloth, TRAU and S3P return unsat , which is wrong.
Norn, Z3Str3 and CVC4 timed out after 1,000 seconds, which
shows that existing tools are incomplete, in a practical sense.
Our solver finds the assignment x = aba, y = ab, u = cabc
and v, w, z = ε in a fraction of a second.

III. BLOCKS, SUBSTITUTIONS AND THEORIES

Suppose that a sequence u has an l length subsequence of
consecutive occurrences of the constant a. This subsequence
can be compactly represented by the pair (a, l), which we refer
to as a block: pairs in Γ× PExp where

PExp := P | x | PExp + PExp | PExp − PExp
and x is a variable over positive natural numbers, P. We
require that a PExp is positive. A sequence that allows blocks



is called an extended sequence (es); an extended sequence
equation (ese) is similarly defined. The set of extended
sequences es is (Γ∪ (Γ×PExp)∪Z)∗. We define a function
compress : es → ((Γ,PExp) ∪ Z)∗ which given an
(extended) sequence, replaces contiguous occurrences of each
constant by its block such that no two blocks of the same
constant are adjacent to each other, thus returning a unique
maximally compressed sequence. We define the following
useful functions, which given an extended sequence U : (1)
Elems : es → 2Γ∪Z∪(Γ,PExp) returns the set of elements
of U ; (2) Atoms : es → 2Γ∪Z returns the set of variables
and constants occurring in U ; (3) Consts : es → 2Γ returns
the set of constants in U . (4) Vars : es → 2Z returns the
set of variables in U . These functions extend naturally to
eses and to sets of ess and eses. An extended sequence U
represents a sequence u if u is obtained from U by replacing
every block (α, n) by α repeated n times. Note that n needs
to be a positive integer. Extended sequences U and V are
syntactically equivalent if they represent the same sequence.
We use ≡ to denote syntactic equivalence. For example,
(α, 2)αX ≡ α(α, 2)X , as both of them represent the sequence
αααX . Notice that syntactic equivalence is an equivalence
relation.

We define a substitution σ to be a partial function of the form
σ : es ⇀ es. Given substitution σ, let σv be σ restricted to Z
and let σs be σ\σv . Let dom(f) and cod(f) be the domain and
codomain of function f , respectively. Note that dom(σv) ⊆ Z ,
so σv is a normal substitution. Substitutions σv and σs partition
σ and have disjoint domains. We say that σs is an extended
substitution, as its domain may contain sequences. We require
substitutions to be well-typed, i.e., σv must map unit variables
to sequences of unit length. Uσ stands for the application of
substitution σ to U ∈ es. This notation extends naturally to
equations and sets of equations. In order for application to be
well-defined, we require that σ is consistent, as defined below.
We say that σ is uniquely defined if for all x, y ∈ dom(σ),
if x 6= y then Atoms(x) ∩ Atoms(y) = ∅. To see why we
require this, consider the case where σv = {x:ab, y:a} and
σs = {yax:aba}; note that (yax)σ is ambiguous.

Given two uniquely defined substitutions, σ and τ , we say
that they are equivalent, written σ ≡ τ , if for all U ∈ es,
we have Uσ ≡ Uτ . We say that σ is consistent if it is
uniquely defined and 〈∃τ :: dom(τ) ⊆ Z ∧ σ ≡ τ〉, i.e., σ is
equivalent to a normal substitution. Consider σ = {xay:bbb}.
Even though σ is uniquely defined, it can not be expressed as
a normal substitution. From now on, unless we say otherwise,
all substitutions are implicitly assumed to be consistent. A
substitution σ is said to solve an ese U = V if Uσ ≡ V σ; σ
solves Q, a set of eses, if σ solves every ese in Q. A word
ab is an es in which no prefix is a suffix.

Theorem 1. If σ is a consistent substitution and x1, . . . , xn ∈
Z are distinct variables such that n ≥ 0 and {x1, . . . , xn} ∩
Vars(dom(σ)) = ∅, then σ ∪ {x1:V1, . . . , xn:Vn} (where
V1, . . . , Vn are extended sequences of the right type) is a

consistent substitution.

A theory is a pair T = (Σ, I), where Σ is a signature and
I is a class of Σ-interpretations, the models of T . A set of
formulas, Ψ, entails in T a Σ-formula φ, written Ψ �T φ, if
every interpretation in I that satisfies all formulas in Ψ satisfies
φ as well. The set Ψ is unsatisfiable in T if Ψ �T ⊥.

Let LIA be a theory with signature (0, 1,+,−,≤) interpreted
over the standard model of integers Z. A linear constraint
is a formula of the form

∑
i∈[1..n]

aixi ≤ b, where xi are

variables and ai and b are integer constants. For a collection
of linear constraints C, C �LIA ⊥ means that C is unsatisfiable
in LIA, whereas C 2LIA ⊥ means that a model exists for
C. Our algorithm accepts and generates linear constraints
on the conjunction of input string equations. It assumes a
sound, complete and terminating backend ILP solver for such
constraints. Let ES be a theory of (extended) sequences over
a signature ΣES with two sorts: extended sequences (es) and
integers (Z) along with an infinite set of variables over each
sort. ΣES also includes constants in Γ, PExp expressions,
blocks, (extended) sequences and functions len interpreted as
the string length function, countConst interpreted as a function
counting the number of a specified constant in a sequence and
countWords interpreted as a function counting the number of
specified words in a sequence.

IV. MPMT-BASED STRING SOLVER

Our algorithm, SeqSolve, accepts a conjunction of string
equations Q as well as initial constraints Cinit and returns
either unsat , unknown or sat along with a solution. Cinit is
a set of initexp’s defined as

LExp := Z | x | len(u) | LExp + LExp | LExp − LExp

initexp := LExp (< | ≤ | > | ≥ | = | 6=) LExp

where x is an integer variable (Z), u is an (extended) sequence
and len : es → N is a function that returns length of u. We
refer to variables occurring in PExp and LExp expressions
as numeric variables. Central to the algorithm is a non-
deterministic transition system TranSeq with rules that operate
on configurations consisting of (extended) sequence equations
and sets of LIA constraints.

Our decision procedure can be integrated into MPMT solvers
in a fine-grained way since MPMT is based on branching,
using the branch-and-cut framework. However, in order to
make the paper more self contained, we present TranSeq and
SeqSolve with as few dependencies on the MPMT framework
as possible.

Our decision procedure can be integrated into SMT solvers
using the idea of recursive solvers: these are solvers whose
decision procedures may depend on the solvers themselves.
For example, we can integrate our decision procedure into
Z3, even though our decision procedure uses Z3 as a backend
solver, by using a separate Z3 process to handle the LIA
constraints and one can use this integration as a backend solver



for yet another decision procedure, and so on. As far as we
know, we are the first to propose the idea of recursive solvers.
For SMT solvers like Z3 that provide contexts and a stack with
a push-pop interface to manage constraints, integration can be
achieved using these features by creating a new context or
stack frame, thereby allowing decision procedures to query
the SMT solver without polluting its state.

A. Configurations

The algorithm works on configurations that include tuples of
the form 〈unsat〉, 〈unknown〉, 〈sat , σ, C〉 and 〈Q, σ, vars, C〉
where (1) Q is a set of eses, (2) σ : es ⇀ es is a
(consistent) substitution, (3) vars is a superset of the variables
in Z which occur in Q, (4) C is a union of constraints
Clen ,Cconsts ,Cwords and a set of linear constraints corre-
sponding to Cinit , where (i) Clen is a set of linear constraints
regarding the lengths of variables in vars . For x ∈ vars ,
lx is an integer variable denoting the length of x and εx
is a 0-1 indicator variable indicating whether x is empty.
Linear constraints in Clen and Cinit are over these integer
variables and over PExp variables; (ii) Cconsts is a set of linear
constraints regarding the number of occurrences of constants
in variables from vars . For x ∈ vars , nxa is an integer variable
denoting the number of occurrences of the constant a in x.
Linear constraints in Cconsts are over these variables as well as
over variables of Clen ; (iii) Cwords is a set of linear constraints
regarding the number of words occurring in variables from
vars . Let x ∈ vars and s ∈ consts∗. Then W x

s denotes the
number of s occurrences in x; P xs and Sxs are 0-1 indicator
variables indicating whether x begins with s and ends with
s, respectively. Linear constraints in Cwords are over these
variables as well as over variables of Clen .

The reason why we distinguish between Clen ,Cconsts and
Cwords is that it makes it easier to consider simplified tran-
sition systems that include only a subset of these kinds of
constraints. We define sets consts and Cfuel where (1) consts
is a superset of the constants from Γ occurring in Q and (2)
Cfuel is a set of linear constraints over the lx variables, used
to guarantee termination. Both consts and Cfuel are generated
once and never modified by our transition system. The rules
in TranSeq depend on auxiliary functions that are used to
generate LIA constraints or to simplify equations. All of these
functions are described in the full version of this paper.

B. Transition System TranSeq

We describe a non-deterministic transition system TranSeq.
TranSeq consists of a set of rules called derivation rules. A
derivation rule applies to a configuration K if all of the rule’s
premises are satisfied by K. Such a rule is enabled for K. A
derivation tree is a tree where each node is a configuration and
the children of any non-leaf node are exactly the configurations
obtained by applying one of the derivation rules to the node.
A configuration is terminal if no rules can be applied to it.
We prove that terminal configurations are either of the form
〈unsat〉, in which case we call them unsat terminal nodes,
〈unknown〉, in which case we call them unknown terminal

nodes, or of the form 〈sat , σ, C〉, in which case we call them
sat terminal nodes and σ, C can be used to generate a satisfying
assignment to the equations appearing in the root of the tree.

A configuration K = 〈Q, σ, vars, C〉 is sat (unsat) iff
Q ∪ C ∪ Cfuel is sat (unsat). K is C-sat iff Q ∪ C is sat .
Notice that an unknown terminal node may be sat (or unsat).
This discrepancy is due to the Cfuel constraints, which are
provable upper bounds on the lengths of minimal solutions,
but only if we have no length constraints in the input, so it is
possible that K is C-sat , but the configuration is unsat and
we generate an unknown terminal node. The derivation rules
of TranSeq are given in guarded assignment form and can
be categorized into three groups: (1) Terminal rules: Rules
that yield terminal nodes. (2) Inference rules: Rules that
generate new inferences. (3) Branching rules: Rules that
generate multiple subproblems.

A derivation tree is closed if all its leaf nodes are terminal
nodes. A derivation tree is unsat-closed if it is closed and all
of its leaf nodes are unsat-terminal nodes. A derivation tree
is unknown-closed if it is closed, has at least one unknown
terminal node and has no sat-terminal nodes. We prove that
if a derivation tree is unsat-closed, then the conjunction of
the equations and constraints appearing in the root of the
tree are unsatisfiable. A derivation tree for a set of sequence
equations Q = {u1=v1, u2=v2, . . . , un=vn} and some ini-
tial length constraints Cinit (if provided) is a tree whose
root, genRoot(Q,Cinit), is defined in Algorithm 1, where
Choose(X) is a function that given a non-empty set X , returns
an element of X . Clen , Cconsts and Cwords are initialized
with linear constraints by functions initLen, initConsts and
initWordCount respectively. These functions generate con-
straints which are satisfiable for any string variable. Cfuel

comprises of constraints on the size of the minimum solution
of each equation in Q which are calculated in function initFuel
and are based on results from [23]. The sets consts and vars
are supersets of the constants and variables occurring in Q,
respectively.

We define the function toLIA, which given an initexp returns a
linear constraint. Given len(x), where x is a sequence variable,
toLIA returns lx; we extend this to initexp expressions in the
obvious way and use toLIA to also generate fuel constraints.
We denote the set of words we are interested in counting as
W , which is global.

C. Rules in TranSeq

We now describe each rule in TranSeq. The conclusion of
a rule describes how each component of a configuration is
changed, if it does. Rules with two or more conclusions
separated by ‖, are branching rules, where each of the config-
urations are starting configurations for new branches in their
derivation tree. In derivation rules, if Q is relevant, it appears
on the top-left corner in the premise and as the last line of a
concluding branch. A, t is an abbreviation for A∪{t} and A∼t
abbreviates A \ {t}. We use ≡ (6≡) for syntactic equivalence



Algorithm 1 genRoot(Q,Cinit ) : Given input set of string equations
Q, genRoot generates the root node of a derivation tree.

1: σ ← {}
2: vars ← {x | x ∈ Z ∧ x ∈ uv ∧ u=v ∈ Q}
3: consts ← {a | a ∈ uv ∧ a ∈ Γ∧ u=v ∈ Q}
4: if consts = ∅ ∧ vars ∩ Y 6= ∅ then
5: consts ← {Choose(Γ)}
6: Clen ←

⋃
v∈vars

initLen(v)

7: Cconsts ←
⋃

v∈vars

initConsts(v, consts)

8: Cwords ←
⋃

v∈vars,w∈W
initWordCount(v, w)

9: C ← toLIA(Cinit) ∪ Clen ∪ Cconsts ∪ Cwords

10: Cfuel ← initFuel(Q)
11: return 〈Q, σ, vars, C〉

(in-equivalence) and = (6=) for semantic equality (inequality).

Terminal rules When Q is empty, if C is unsatisfiable,
LIAUnsat infers unsat otherwise Sat returns a sat configu-
ration.

C �LIA ⊥ LIAUnsat
〈unsat〉

{} C 2LIA ⊥ Sat
〈sat , σ, C〉

If the fuel constraints are needed to show unsatisfiability, then
the rule FuelUnsat returns unsat if no initial linear constraints
were provided, otherwise the rule Unknown returns unknown .
Terminal rules are subject to fairness constraints, as described
later.

Cinit = ∅ C ∪ Cfuel �LIA ⊥
FuelUnsat

〈unsat〉

Cinit 6= ∅ C 2LIA ⊥ C ∪ Cfuel �LIA ⊥
Unknown

〈unknown〉
If there exists an equation with syntactically different extended
sequences on both sides, ConstUnsat infers unsat .

{U=V , . . .} U 6≡ V Vars(UV ) = ∅
ConstUnsat

〈unsat〉
Note that we do not apply substitution σ to U and V when
checking for syntactic equivalence, as shown below.

{U=V , . . .} Uσ 6≡ V σ Vars(UV ) = ∅
ConstUnsat

〈unsat〉
This is because, for any equation U=V ∈ Q, we get the
original rule due to Uσ = U as a result of the invariant
Qσ = Q, which we prove later.

When one side of an extended equation contains a constant or
a block, while the other side is empty, ConstEmpty deduces
unsat . If both sides begin with blocks of unequal constants,
DiffConsts deduces unsat .
{U=ε, . . .} α ∈ Atoms(U) α ∈ consts

ConstEmpty
〈unsat〉

{(α, l)U=(β,m)V , . . .} α 6= β
DiffConsts

〈unsat〉

If one side of an equation contains a unit variable while the
other side is empty, then YVarEmpty infers 〈unsat〉.

{U=ε, . . .} e ∈ U e ∈ Y
YVarEmpty

〈unsat〉
The rules ConstEmpty and DiffConsts deduce unsat based on
how terms in an equation start, but there is a symmetry here
that allows us to define rules that make the same deduction
based on how terms end. For example, the symmetric version
of DiffConsts would start with {U(α, l) = V (β,m), . . .}, but
would otherwise be identical to DiffConsts. When rules have
this kind of symmetry, we denote it by underlining the name
of the rule in its definition. These symmetric rules help with
efficiency, but are not needed for completeness, so to simplify
the rest of the presentation, we proceed as if they do not exist.

Inference rules Trim removes syntactically equal prefixes and
suffixes from both sides of an equation; note that one of
a, b can be ε. EqElim removes eses whose both sides are
syntactically equivalent. Observe that Trim can be used to
reduce an equation U=V which is syntactically equivalent
on both sides, to get ε=ε, in which case we get syntactic
equivalence of both sides trivially.
{aUb=cV d, . . .} a ≡ c
|ab| > 0 b ≡ d

Trim
{U=V , . . .}

{U=U, . . .}
EqElim

{. . .}

Decompose splits an ese U=V into multiple equations using
length constraints. A simple example is given in Example 3.

{U=V , . . .} |splitEq(U, V, C)| > 1
Decompose

splitEq(U, V, C) ∪ {. . .}
Compress converts an equation u=v ∈ Q into a maximally
compressed sequence. Observe that the premise requires that
there is at least one constant element in u=v. Note that blocks
such as (a, 1) are not constants, as they are not elements of
Γ.

{u=v, . . .} Elems(uv) ∩ Γ 6= ∅
Compress

{compress(u)=compress(v), . . .}
VarSubst formalizes the idea from Example 8. Given W , a
non-empty subsequence in Q satisfying the conditions below,
the rule replaces W with a new variable z. We show later that
for every node in a derivation tree generated by our algorithm,
Qσ = Q holds; hence, the first condition for consistency of
substitutions is satisfied. The second consistency condition is
satisfied due to the premise that requires atoms of W and
Q{W :z} to be disjoint. Hence, the substitution in the new
configuration is consistent. The LIANewVar procedure gener-
ates numeric constraints for new variables. After this rule, it
is called implicitly whenever a new variable is introduced.
{U=V , . . .} 〈∃S, T :: SWT=U ∧ |W | > 1〉
Atoms(W ) ⊆ vars z ∈ X z /∈ vars

Atoms(W ) ∩ Atoms({U=V , . . .}{W :z}) = ∅
VarSubst

LIANewVar(z)
σ ← σ,W :z

{U=V , . . .}{W :z}



Rewrite replaces a subsequence S of U by T , given that S=T
is an equation in Q. Rewrite can choose which occurrences to
replace. Infinite derivation trees are ruled out with a fairness
requirement that only allows us to use the Rewrite rule a finite
number of times.

{U=V , S=T , . . .} S ∈ U
Rewrite

{U{S:T}=V , S=T , . . .}
EqLength, EqConsts and EqWords generate length, constant
count and word count constraints implied by an equation.
Function equateWordCount returns a linear constraint equat-
ing the number of occurrences of a word w in U and V .

{U=V , . . .} equateLen(U ,V ) 6⊆ C
EqLength

Clen ← Clen ∪ equateLen(U, V )

{U=V , . . .} equateConsts(U ,V ) 6⊆ C
EqConsts

Cconsts ← Cconsts ∪ equateConsts(U, V, consts)

{U=V , . . .} w ∈ consts≥2

equateWordCount(U, V,w) 6⊆ C
EqWords

Cwords ← Cwords ∪ equateWordCount(U, V,w)

VarElim allows us to eliminate variables.
{x=V , . . .} x /∈ V x ∈ X

VarElim
σ ← σ, x:V

{. . .}{x:V }
Given an equation where one side starts with c occurrences of
variable x and the other starts with m occurrences of constant
β, the rule VarSplit infers shape information about x involving
fresh variable y. x can not be empty, and the prefix of xc must
be syntactically equivalent to (β,m). Hence, VarSplit infers
that x is (β, k)y, where c ∗ k ≥ m. Note that c is a constant,
hence expressions such as c ∗ k do not take us out of the LIA
fragment. Also note that if k < m, y will have to start with β
as well, which we do not want. Hence we add an implication
that if k < m then y is empty. We extend the set of equations
with x=(β, k)y. Anytime we extend a the set of equations with
an equation of the form x= . . ., we call VarElim to eliminate
the variable x.
{xc(α, l)U=(β,m)V , . . .} α 6= β, c > 0

x, y ∈ X y /∈ vars
VarSplit

Clen ← Clen , k > 0, (c− 1) ∗ k < m ≤ c ∗ k,
k < m⇒ εy = 1

Cwords ← Cwords , k < m⇒ Sxβ = 1

{x=(β, k)y, xc(α, l)U=(β,m)V , . . .}
Length constraints alone may not always be enough to split
an equation. LenSplit introduces a new variable on one side
of an equation such that the resulting equation is clearly split
into smaller and possibly more tractable equations. Example
10 illustrates a simple example.

{UW=SzV , . . .} C �LIA len(U) < len(Sz)

y, z ∈ X y /∈ vars
LenSplit

Clen ← Clen , εy = 0

{Uy=Sz,W=yV , . . .}

Inferences made by the backend LIA solver can be used to
infer sequence variables. LIAEmpty concludes that a variable
x is empty if εx = 1 is derived by the solver. Similarly, x
starts (ends) with α iff the solver derives P xα = 1 (Sxα = 1).

C �LIA εx = 1
x ∈ vars LIAEmpty
{x=ε, . . .}

C �LIA P
x
α = 1 y ∈ X

x ∈ vars y /∈ vars
LIABegin

{x=αy, . . .}

C �LIA S
x
α = 1 y ∈ X

x ∈ vars y /∈ vars
LIAEnd

{x=yα, . . .}

Given an equation where one side is empty, XVarEmpty infers
that a variable x ∈ X in the other side must also be empty. If
the two sides of an ese start with unit variables x and y, then
DiffYVars infers that both the variables must be equal.

{U=ε, . . .}
x ∈ U
x ∈ X XVarEmpty

{x = ε, U = ε, . . .}

{xU=yV , . . .}
x 6≡ y
x, y ∈ Y

DiffYVars
{x = y, U = V, . . .}

Branching rules Given an equation where one side starts
with a block of α, while the other side starts with a unit
variable e, UnitConst infers that either the length of the α
block is greater than one, or equal to one. Observe that some
constraints in this rule are emphasized with a wavy underline.
If such constraints are implied by C, we can directly jump to
their corresponding branch. Practically, it helps to not branch,
if one of the underlined constraints can be derived in the
premise.

{eU=(α, l)V , . . .} e ∈ Y
UnitConst

Clen ← Clen , l = 1
::::

‖ Clen ← Clen , l > 1
::::

{e=α, U=V , . . .} {e=α, U=(α, l − 1)V , . . .}

Given an equation where one side starts with a unit variable e
while the other side starts with sequence variable y, UnitVar
infers that either y is empty, or e is a prefix of y.

{eU=yV , . . .} e ∈ Y y, z ∈ X z /∈ vars
UnitVar

Clen ← Clen , εy = 1
:::::

‖ Clen ← Clen , εy = 0
:::::

{y=ε, eU=V , . . .} {y=ez, U=zV , . . .}

If both sides of an equation start with blocks of the same
constant α, SimConsts infers that either both blocks have the
same length or one of them has length more than the other.
So this rule should have three branches, one equating l and
m, while the other two deducing a strict inequality between
them. However, there are two branches, one equating l and
m, while the other deducing m̂ > l̂. This is because, for the
sake of conciseness we introduce “hatted" variables Û , V̂ , l̂, m̂
and β̂. A branch with hatted variables signifies the presence
of another branch where the hatted variables are replaced by
their substitutions defined as:

{x̂:y, ŷ:x, X̂:Y , Ŷ :X, Û :V , V̂ :U, l̂:m, m̂:l, α̂:β, β̂:α}



Notice that we also have underlined constraints in the con-
clusion. So, the rule SimConsts represents six rules, three
after expanding hatted variables where none of the underlines
constraints is implied by C, and the rest considering presence
of each of the underlined constraints in the premise of its
corresponding rule.

{(α, l)U=(α,m)V , . . .}
SimConsts

Clen ← Clen ,m = l
:::::

‖ Clen ← Clen , m̂ > l̂
:::::

{U=V , . . .} {Û=(α, m̂− l̂)V̂ , . . .}
Similar to SimConsts, DiffXVars also uses both hatted vari-
ables and underlined constraints which gives rise to a total of
ten rules. If both sides of an equation start with syntactically
different variables x, y ∈ X , and none of the underlined
constraints is implied by C, then DiffXVars infers that either
one of them is empty or they are semantically equal or one of
them is a prefix of the other.

{xU=yV , . . .} x 6≡ y
z /∈ vars x, y ∈ X z ∈ X

DiffXVars
Clen ← Clen , lx̂ > lŷ

:::::
, ‖ Clen ← Clen , lx = ly,

::::::

εx̂ = εŷ = εz = 0, x̂ = lŷ + lz
::::::::::::::::::::::::

εx = εy = 0
:::::::::

{x̂ = ŷz, zÛ = V̂ , . . .} {x = y, U = V, . . .}
‖ Clen ← Clen , εx̂ = 1

:::::

{x̂=ε, Û=ŷV̂ , . . .}
Finally, VarConst fires when one side of an equation starts
with a constant block (α, l) while the other side starts with
a variable x. Again, VarConst represents eight rules due
to the presence of underlined constraints in its branching
conclusions. Assuming none of these constraints is implied
by C, the first branch sets x empty; second branch sets length
of x less than l; third branch equated x to (α, l), while the
last branch sets x as a block of α whose length is greater than
l, possibly followed by another variable y that does not start
with α.
{xU=(α, l)V , . . .} x, y ∈ X y /∈ vars

VarConst
Clen ← Clen , εx = 1

:::::
‖ Clen ← Clen , 0 < lx < l

::::::::

{x=ε, U=(α, l)V , . . .} {x=(α, lx), U=(α, l − lx)V , . . .}
Clen ← Clen , 0 < lx = l

::::::::
‖ Clen ← Clen , 0 < l < lx

::::::::

{x=(α, l), U=V , . . .} {x=(α, lx)y, xU=(α, l)V , . . .}

D. SeqSolve definition

We define SeqSolve in Algorithm 2. It takes a set of sequence
equations W and an optional set of length constraints Cinit

as input and either returns a sat with a solution, unknown or
unsat .

V. CORRECTNESS OF SEQSOLVE

Full proofs of correctness of SeqSolve appear in the full
version of this paper. In the interest of brevity, we outline the
structure of proofs in this section. First, we define correctness.

Algorithm 2 SeqSolve takes a set of (extended) sequence equations
W and optionally a set of linear constraints Cinit as input and either
returns a sat with a solution,unknown or unsat .

1: T ← genRoot(W,Cinit)
2: while ∃ a non-terminal leaf node n ∈ T do
3: apply an enabled TranSeq rule to n
4: if sat terminal node 〈sat , σ, C〉 generated then
5: generate a satisfying assignment ψ from σ, C
6: return sat , ψ

7: if ∃ leaf node 〈unknown〉 ∈ T then
8: return unknown
9: else

10: return unsat

Definition 1. A string equation solver is an algorithm that
takes as input a set of string equations and a set of linear
constraints. Its output is either “Unsat,” “Unknown,” or “Sat”
and an assignment.

Definition 2. A string equation solver is sound if it never lies,
by which we mean: (1) when it returns “Sat,” the conjunction
of the string equations and the linear constraints is satisfiable
and the assignment returned is a satisfying assignment and
(2) when it returns “Unsat,” the conjunction of the string
equations and the linear constraints is unsatisfiable.

Definition 3. A string equation solver is partially correct if it
is sound and terminating.

Definition 4. A string equation solver is fully correct if it is
sound, terminating and never returns “Unknown.”

Note that a sound solver can be turned into a partially
correct solver by adding a timeout, which results in the solver
returning “Unknown.” We prove that our solver is fully correct
for the theory of string equations by showing that when the
input consists of only a conjunction of string equations Q,
our transition system generates a derivation tree that is unsat-
closed iff the input is unsatisfiable; otherwise it generates a
derivation tree containing a sat terminal node, from which we
can extract a satisfying assignment for the input. When the
input also includes linear constraints, our solver is partially
correct as it may also generate an unknown-closed derivation
tree. We show that SeqSolve is sound using the following
theorems.

Theorem 5. Given inputs Q,Cinit such that SeqSolve gener-
ates a tree T with a sat terminal node 〈sat , σ, C〉, then σ, C
can be used to generate a solution for Q,Cinit .

A configuration is var-compliant iff it is of the form
〈Q, σ, vars, . . .〉 where Vars(σ) ⊆ vars (by Vars(σ) we mean
Vars(dom(σ)) ∪ Vars(cod(σ))). A configuration is numvar-
compliant iff (1) it is of the form 〈Q, σ, vars, C〉 and all
numeric variables appearing in it are also in C and (2) for
a variable x ∈ vars , initLen(x) ∪ initConsts(x, consts) ∪
initWordCount(x, consts) ⊆ C. A configuration is good iff it
is either terminal or it is disjoint, var-compliant and numvar-
compliant. A derivation tree is good if all of its nodes are



good configurations. It turns out that all SeqSolve-generated
derivation trees are good.

Lemma 7. Given input Q,Cinit where Q is a set of (extended)
sequence equations and Cinit is a set of linear constraints,
genRoot returns a good, non-terminal configuration.

Lemma 12. TranSeq rules preserve goodness, i.e., when
applied to a good configuration, they produce good config-
urations.

SeqSolve is subject to the following fairness conditions: (1)
LIAUnsat, FuelUnsat and Unknown are weakly-fair rules. First
note that once any of these rules is enabled, it stays enabled.
We require that no branch of a derivation tree contains a suffix
in which a weakly-fair rule is infinitely enabled, yet never
applied. (2) Rewrite can only be applied a finite number of
times along any branch.

A fair derivation tree is one which respects the above fairness
conditions. SeqSolve generates fair and good derivation trees.
We use good derivation trees to show that TranSeq is sound.

Theorem 6. Every TranSeq rule is sound when applied to a
good configuration.

The termination of SeqSolve (and TranSeq) depends on a
bound on the minimum lengths of solutions of string equations
as described in [23] and on fair derivation trees.

Theorem 9. SeqSolve is terminating.

Theorem 10. SeqSolve is a partially correct string equation
solver.

Theorem 11. SeqSolve is a fully correct string equation solver
when the input does not include any linear constraints.

VI. IMPLEMENTATION OF SEQSOLVE

Our implementation of SeqSolve along with all the bench-
marks used is publicly available [24]. SeqSolve is implemented
in ACL2s [25] which allows us to (1) define datatypes like
blocks, sequences and valid Z3 expressions (used to query
Z3) (2) define TranSeq rules, which requires proving termina-
tion and input/output contracts (input/output types) (3) prove
basic theorems relating datatypes (subtypes,etc) and properties
needed for above proofs and (4) make essential use of the Z3
interface ACL2s provides to solve ILP constraints. SeqSolve
provides various settings that can be used to control how
aggressively it generates linear constraints; however, all of
the results reported in this paper are with the default settings.
We implemented SeqSolve as a standalone decision procedure
as opposed to making it a part of an MPMT solver. This
makes it easier to compare our tool with other string solvers
in an apples-to-apples way, avoiding the complications that
would arise from the use of different underlying solvers and
frameworks.

We apply a few TranSeq rules until we reach a fixpoint
before generating the derivation tree in order to simplify the
input problem. These preprocessing steps include Decompose,

VarElim, VarSubst and Compress. After reaching a fixpoint,
we use LIAUnsat to check if the set of initial constraints and
the linear constraints we generated above are unsat .

In our implementation of the rule EqWords, we only use words
with the property that no non-empty prefix of w is a suffix
of w. Since our solver makes many low-level calls to Z3, it
does this in an incremental way. In addition, care is taken to
avoid unnecessary calls to Z3, e.g., LIAUnsat is not checked
after running Trim, EqElim, Decompose, Compress, VarSubst,
Rewrite and VarElim, because in all of these rules, we do
not update C. We do not apply any branching rules, unless
we have no other options. Our implementation supports string
operations like charAt, contains, indexOf, substr, prefixOf and
suffixOf. Each of these operations can be converted to a
problem in the theory of extended sequences e.g., given charAt
constraint e = (str.at s n), we convert it into the conjunction
of the string equation s = xey and len(x) = n, where e ∈ Y
and x, y ∈ X . Given the constraint (str.contains s t), we
convert it into the string equation s = xty where x, y ∈ X .

VII. EVALUATION

We compared our solver against Z3Str2 and Z3Str3 (Z3 ver-
sion 4.8.8), Norn 1.0, Z3-Trau, Sloth 1.0 and CVC4 1.7. These
are the only string solvers we know of that solve string equa-
tions with length constraints and ran without crashing. In [26],
the tools CVC4, Z3Str2 and S3 are evaluated in which S3 is
found to be 5 times slower than Z3Str2 and crashed on about
4.5% of problems in the Kaluza [27] benchmarks. We ran all
of the selected tools on Kaluza and Stringfuzz-generated [28]
benchmarks, as well as on benchmarks consisting of problem
instances pertinent to type inference in Remora [9], [10], a
dependently typed array processing language. The type of an
array term in Remora encodes the shape of the array as a
list of dimensions (natural numbers). Our work was motivated
by the problem of inferencing these shapes which reduces to
solving string equations. For example, suppose that X has
dimensions [a 3]b and Y has dimensions b[3]z, where a is
a single dimension, while b and z are lists of dimensions,
and juxtaposition indicates concatenation. If X and Y are
used in a context where they must have the same dimensions,
then for the program to be well-typed, we require that the
string equation a3b = b3z is satisfiable. One solution is
b = [ ], z = [3] and a = 3, in which case X and Y are
2-dimensional matrices with shape [3 3].

We used all of the problems in the above mentioned bench-
marks that were in the extended sequence theory, thus, ex-
cluding problems in Kaluza that used other constructs. This
allows us to evaluate only our contribution, the string solver,
not the underlying solvers. In total, we have 1,178 problems,
of which 903 are sat problems and 275 are unsat problems.
We cross-verified the tools and for all benchmark problems, all
tools that gave definitive answers agreed on the classification
of the problem. All experiments were performed on the same
machine, which was running macOS Catalina 10.14.6 with a
2.7GHz Intel Core i5 CPU and 8 GB of memory. The timeout
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Fig. 1. Performance of SeqSolve, CVC4, Z3-Str3, Norn, Sloth, Trau
and Z3-Str2 on solved benchmarks across all three benchmark sets.

for each problem was set to 60 seconds. Figure 1 shows the
results of the performance evaluation, using what we call a
ray plot. Ray plots are designed to visually depict the results
of the evaluation in as simple a way as possible. On the x-axis
we have the expected number of problems solved and on the
y-axis we have the expected time in seconds. Suppose you
want to determine how long it will take to solve n benchmark
problems, say 800; just look at the line x = 800 and you will
see that SeqSolve will take about 100 seconds, CVC4 will
take over 2,000 seconds, Z3Str3 will take just under 12,000
seconds, Norn will take about 5,500 seconds and Z3Str2 can
only solve about 500 problems, so it will never solve 800
problems. Symmetrically, if you want to determine how many
problems you can expect to solve in t seconds, just look at
the line y = t. This is a simpler plot than a cactus plot, which
shows similar information, but with problems ordered, on a
per-tool basis, from easiest to hardest. These orderings can
vary significantly from tool to tool and there is no way for a
user of the tool to determine how easy or difficult a problem
will be, so it is not clear what benefit there is to this extra
complexity. It is easy to generate ray plots; just run all the
benchmark problems and draw a ray from the origin to the
(p, t) coordinate, where p is the number of problems solved
and t is the time taken. This is equivalent to shuffling the
problems many times and taking the average of the running
times for the shufflings.

In Table I, we show a table version of the experimental
evaluation. Tuples under “Solved” give the number of
problems solved for the Stringfuzz-generated, Kaluza and
handcrafted benchmarks, respectively. In addition to the time
in seconds, we also show the number of problems for which
solvers returned unknown , timed out or returned incorrect
result (X). We ran the tools without giving them a timeout
and our scripts killed jobs that were taking too long, but some

TABLE I
PERFORMANCE OF SOLVERS ON ALL BENCHMARKS

Solver Solved Time (s) Unknown Timeout X

SeqSolve 1,178: 780/344/54 176 0 0 0

CVC4 1,128: 736/344/48 3,200 0 50 0

Z3Str3 947: 552/344/51 13,527 6 225 0

Norn 883: 492/344/47 12,783 120 175 0

Z3Str2 465: 121/332/12 18 713 0 0

Trau 1,081: 692/344/45 5,223 18 78 1

Sloth 858: 462/344/52 7,486 0 319 64

tools returned unknown before timeouts occurred. Notice
that SeqSolve beats all the other string solvers in terms of
the standard ordering, which is based on first the number
incorrect results, then on the number of problems solved and
finally on the time taken.

Acknowledgements: We thank Andrew Walter for integrating
Z3 with ACL2s, which was indispensable.

VIII. CONCLUSION AND FUTURE WORK

We introduced a new non-deterministic, branching transition
system, TranSeq, for deciding the satisfiability of conjunctions
of string equations and length constraints. TranSeq extends the
MPMT framework for combining decision procedures and we
prove that it is both sound and complete. We implemented a
prototype, SeqSolve, which is based on TranSeq and resolves
non-deterministic choices in a way designed to infer as much
as possible with as few computational resources as possible.
We evaluated SeqSolve by comparing it with existing tools
on a suite of benchmark problems and found that SeqSolve
solved more problems and was faster than existing solvers. In
our ongoing work, we plan to extend the scope of TranSeq
so that it supports richer classes of constraints. We also plan
to reason about the implementation, as it is mostly written in
ACL2s, which is built on top of the ACL2 theorem prover.
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